75 research outputs found

    Simplified Planner Selection

    Get PDF
    There exists no planning algorithm that outperforms all oth- ers. Therefore, it is important to know which algorithm works well on a task. A recently published approach uses either im- age or graph convolutional neural networks to solve this prob- lem and achieves top performance. Especially the transforma- tion from the task to an image ignores a lot of information. Thus, we would like to know what the network is learning and if this is reasonable. As this is currently not possible, we take one step back. We identify a small set of simple graph features and show that elementary and interpretable machine learning techniques can use those features to outperform the neural network based approach. Furthermore, we evaluate the importance of those features and verify that the performance of our approach is robust to changes in the training and test data

    Machine Learning for Classical Planning: Neural Network Heuristics, Online Portfolios, and State Space Topologies

    Get PDF
    State space search solves navigation tasks and many other real world problems. Heuristic search, especially greedy best-first search, is one of the most successful algorithms for state space search. We improve the state of the art in heuristic search in three directions. In Part I, we present methods to train neural networks as powerful heuristics for a given state space. We present a universal approach to generate training data using random walks from a (partial) state. We demonstrate that our heuristics trained for a specific task are often better than heuristics trained for a whole domain. We show that the performance of all trained heuristics is highly complementary. There is no clear pattern, which trained heuristic to prefer for a specific task. In general, model-based planners still outperform planners with trained heuristics. But our approaches exceed the model-based algorithms in the Storage domain. To our knowledge, only once before in the Spanner domain, a learning-based planner exceeded the state-of-the-art model-based planners. A priori, it is unknown whether a heuristic, or in the more general case a planner, performs well on a task. Hence, we trained online portfolios to select the best planner for a task. Today, all online portfolios are based on handcrafted features. In Part II, we present new online portfolios based on neural networks, which receive the complete task as input, and not just a few handcrafted features. Additionally, our portfolios can reconsider their choices. Both extensions greatly improve the state-of-the-art of online portfolios. Finally, we show that explainable machine learning techniques, as the alternative to neural networks, are also good online portfolios. Additionally, we present methods to improve our trust in their predictions. Even if we select the best search algorithm, we cannot solve some tasks in reasonable time. We can speed up the search if we know how it behaves in the future. In Part III, we inspect the behavior of greedy best-first search with a fixed heuristic on simple tasks of a domain to learn its behavior for any task of the same domain. Once greedy best-first search expanded a progress state, it expands only states with lower heuristic values. We learn to identify progress states and present two methods to exploit this knowledge. Building upon this, we extract the bench transition system of a task and generalize it in such a way that we can apply it to any task of the same domain. We can use this generalized bench transition system to split a task into a sequence of simpler searches. In all three research directions, we contribute new approaches and insights to the state of the art, and we indicate interesting topics for future work

    Machine learning for classical planning : neural network heuristics, online portfolios, and state space topologies

    Get PDF
    State space search solves navigation tasks and many other real world problems. Heuristic search, especially greedy best-first search, is one of the most successful algorithms for state space search. We improve the state of the art in heuristic search in three directions. In Part I, we present methods to train neural networks as powerful heuristics for a given state space. We present a universal approach to generate training data using random walks from a (partial) state. We demonstrate that our heuristics trained for a specific task are often better than heuristics trained for a whole domain. We show that the performance of all trained heuristics is highly complementary. There is no clear pattern, which trained heuristic to prefer for a specific task. In general, model-based planners still outperform planners with trained heuristics. But our approaches exceed the model-based algorithms in the Storage domain. To our knowledge, only once before in the Spanner domain, a learning-based planner exceeded the state-of-the-art model-based planners. A priori, it is unknown whether a heuristic, or in the more general case a planner, performs well on a task. Hence, we trained online portfolios to select the best planner for a task. Today, all online portfolios are based on handcrafted features. In Part II, we present new online portfolios based on neural networks, which receive the complete task as input, and not just a few handcrafted features. Additionally, our portfolios can reconsider their choices. Both extensions greatly improve the state-of-the-art of online portfolios. Finally, we show that explainable machine learning techniques, as the alternative to neural networks, are also good online portfolios. Additionally, we present methods to improve our trust in their predictions. Even if we select the best search algorithm, we cannot solve some tasks in reasonable time. We can speed up the search if we know how it behaves in the future. In Part III, we inspect the behavior of greedy best-first search with a fixed heuristic on simple tasks of a domain to learn its behavior for any task of the same domain. Once greedy best- first search expanded a progress state, it expands only states with lower heuristic values. We learn to identify progress states and present two methods to exploit this knowledge. Building upon this, we extract the bench transition system of a task and generalize it in such a way that we can apply it to any task of the same domain. We can use this generalized bench transition system to split a task into a sequence of simpler searches. In all three research directions, we contribute new approaches and insights to the state of the art, and we indicate interesting topics for future work.Viele Alltagsprobleme können mit Hilfe der Zustandsraumsuche gelöst werden. Heuristische Suche, insbesondere die gierige Bestensuche, ist einer der erfolgreichsten Algorithmen für die Zustandsraumsuche. Wir verbessern den aktuellen Stand der Wissenschaft bezüglich heuristischer Suche auf drei Arten. Eine der wichtigsten Komponenten der heuristischen Suche ist die Heuristik. Mit einer guten Heuristik findet die Suche schnell eine Lösung. Eine gute Heuristik für ein Problem zu modellieren ist mühsam. In Teil I präsentieren wir Methoden, um automatisiert gute Heuristiken für ein Problem zu lernen. Hierfür generieren wird die Trainingsdaten mittels Zufallsbewegungen ausgehend von (Teil-) Zuständen des Problems. Wir zeigen, dass die Heuristiken, die wir für einen einzigen Zustandsraum trainieren, oft besser sind als Heuristiken, die für eine Problemklasse trainiert wurden. Weiterhin zeigen wir, dass die Qualität aller trainierten Heuristiken je nach Problemklasse stark variiert, keine Heuristik eine andere dominiert, und es nicht vorher erkennbar ist, ob eine trainierte Heuristik gut funktioniert. Wir stellen fest, dass in fast allen getesteten Problemklassen die modellbasierte Suchalgorithmen den trainierten Heuristiken überlegen sind. Lediglich in der Storage Problemklasse sind unsere Heuristiken überlegen. Oft ist es unklar, welche Heuristik oder Suchalgorithmus man für ein Problem nutzen sollte. Daher trainieren wir online Portfolios, die für ein gegebenes Problem den besten Algorithmus vorherzusagen. Die Eingabe für das online Portfolio sind bisher immer von Menschen ausgewählte Eigenschaften des Problems. In Teil II präsentieren wir neue online Portfolios, die das gesamte Problem als Eingabe bekommen. Darüber hinaus können unsere online Portfolios ihre Entscheidung einmal korrigieren. Beide Änderungen verbessern die Qualität von online Portfolios erheblich. Weiterhin zeigen wir, dass wir auch gute online Portfolios mit erklärbaren Techniken des maschinellen Lernens trainieren können. Selbst wenn wir den besten Algorithmus für ein Problem auswählen, kann es sein, dass das Problem zu schwierig ist, um in akzeptabler Zeit gelöst zu werden. In Teil III zeigen wir, wie wir von dem Verhalten einer gierigen Bestensuche auf einfachen Problemen ihr Verhalten auf schwierigeren Problemen der gleichen Problemklasse vorhersagen können. Dieses Wissen nutzen wir, um die Suche zu verbessern. Zuerst zeigen wir, wie man Fortschrittszustände erkennt. Immer wenn gierige Bestensuche einen Fortschrittszustand expandiert, wissen wir, dass es nie wieder einen Zustand mit gleichem oder höheren heuristischen Wert expandieren wird.Wir präsentieren zwei Methoden, die diesesWissen verwenden. Aufbauend auf dieser Arbeit lernen wir von einem Problem, wie man jegliches Problem der gleichen Problemklasse in eine Reihe von einfacheren Suchen aufteilen kann

    IPC: A Benchmark Data Set for Learning with Graph-Structured Data

    Get PDF
    Benchmark data sets are an indispensable ingredient of the evaluation of graph-based machine learning methods. We release a new data set, compiled from International Planning Competitions (IPC), for benchmarking graph classification, regression, and related tasks. Apart from the graph construction (based on AI planning problems) that is interesting in its own right, the data set possesses distinctly different characteristics from popularly used benchmarks. The data set, named IPC, consists of two self-contained versions, grounded and lifted, both including graphs of large and skewedly distributed sizes, posing substantial challenges for the computation of graph models such as graph kernels and graph neural networks. The graphs in this data set are directed and the lifted version is acyclic, offering the opportunity of benchmarking specialized models for directed (acyclic) structures. Moreover, the graph generator and the labeling are computer programmed; thus, the data set may be extended easily if a larger scale is desired. The data set is accessible from \url{https://github.com/IBM/IPC-graph-data}.Comment: ICML 2019 Workshop on Learning and Reasoning with Graph-Structured Data. The data set is accessible from https://github.com/IBM/IPC-graph-dat

    Online Planner Selection with Graph Neural Networks and Adaptive Scheduling

    Get PDF
    Automated planning is one of the foundational areas of AI. Since no single planner can work well for all tasks and domains, portfolio-based techniques have become increasingly popular in recent years. In particular, deep learning emerges as a promising methodology for online planner selection. Owing to the recent development of structural graph representations of planning tasks, we propose a graph neural network (GNN) approach to selecting candidate planners. GNNs are advantageous over a straightforward alternative, the convolutional neural networks, in that they are invariant to node permutations and that they incorporate node labels for better inference. Additionally, for cost-optimal planning, we propose a two-stage adaptive scheduling method to further improve the likelihood that a given task is solved in time. The scheduler may switch at halftime to a different planner, conditioned on the observed performance of the first one. Experimental results validate the effectiveness of the proposed method against strong baselines, both deep learning and non-deep learning based. The code is available at \url{https://github.com/matenure/GNN_planner}.Comment: AAAI 2020. Code is released at https://github.com/matenure/GNN_planner. Data set is released at https://github.com/IBM/IPC-graph-dat

    Explainable Planner Selection

    Get PDF
    Since no classical planner consistently outperforms all oth ers, it is important to select a planner that works well for a given classical planning task. The two strongest approaches for planner selection use image and graph convolutional neu ral networks. They have the drawback that the learned mod els are not interpretable. To obtain explainable models, we identify a small set of simple task features and show that el ementary and interpretable machine learning techniques can use these features to solve as many tasks as the approaches based on neural networks

    Zur Fettsäurenzusammensetzung der Kuhmilch in Abhängigkeit von Weidehaltung sowie konventioneller oder ökologischer Wirtschaftsweise

    Get PDF
    The objective of this study was to estimate the influence of different husbandry systems (organic vs. conventional) and fodder components (pasture vs. conserved feed (esp. corn silage)) on the composition of fatty acids in milk fat during the grazing period. Therefore, the fatty acid composition of herd milk of 27 bavarian dairy farms (conventional without pasture (n=9), conventional with pasture (n=9), organic with pasture (n=9)) was analyzed. The contents of omega-3-fatty acid and of conjugated linoleic acid (CLA) of milk from organic dairy farms with pasture was significant higher (1,42 % resp. 2,17 %) compared to the conventional farms with pasture (0,96 % resp. 1,37 %). The conventional dairy farms without pasture showed the lowest level (0,59 % resp. 0,69 %)

    Reinforcement Learning for Planning Heuristics

    Get PDF
    Informed heuristics are essential for the success of heuristic search algorithms. But, it is difficult to develop a new heuris- tic which is informed on various tasks. Instead, we propose a framework that trains a neural network as heuristic for the tasks it is supposed to solve. We present two reinforcement learning approaches to learn heuristics for fixed state spaces and fixed goals. Our first approach uses approximate value iteration, our second ap- proach uses searches to generate training data. We show that in some domains our approaches outperform previous work, and we point out potentials for future improvements

    Online Planner Selection with Graph Neural Networks and Adaptive Scheduling

    Get PDF
    Automated planning is one of the foundational areas of AI. Since no single planner can work well for all tasks and do- mains, portfolio-based techniques have become increasingly popular in recent years. In particular, deep learning emerges as a promising methodology for online planner selection. Owing to the recent development of structural graph repre- sentations of planning tasks, we propose a graph neural net- work (GNN) approach to selecting candidate planners. GNNs are advantageous over a straightforward alternative, the con- volutional neural networks, in that they are invariant to node permutations and that they incorporate node labels for better inference. Additionally, for cost-optimal planning, we propose a two- stage adaptive scheduling method to further improve the like- lihood that a given task is solved in time. The scheduler may switch at halftime to a different planner, conditioned on the observed performance of the first one. Experimental results validate the effectiveness of the proposed method against strong baselines, both deep learning and non-deep learning based. The code is available at https://github.com/matenure/GNN planner

    Neural Network Heuristic Functions for Classical Planning: Reinforcement Learning and Comparison to Other Methods

    Get PDF
    How can we train neural network (NN) heuristic functions for classical planning, using only states as the NN input? Prior work addressed this question by (a) supervised learning and/or (b) per-domain learning generalizing over problem in- stances. The former limits the approach to instances small enough for training data generation, the latter to domains and instance distributions where the necessary knowledge generalizes across instances. Clearly, reinforcement learning (RL) on large instances can potentially avoid both difficul- ties. We explore this here in terms of three methods drawing on previous ideas relating to bootstrapping and approximate value iteration, including a new bootstrapping variant that es- timates search effort instead of goal distance. We empirically compare these methods to (a) and (b), aligning three differ- ent NN heuristic function learning architectures for cross- comparison in an experiment of unprecedented breadth in this context. Key lessons from this experiment are that our meth- ods and supervised learning are highly complementary; that per-instance learning often yields stronger heuristics than per- domain learning; and that LAMA is still dominant but is out- performed by our methods in one benchmark domain
    corecore